Bubble of gas zips around galaxy’s supermassive black hole


At the center of our galaxy is an enormous black hole, surrounded by a swirl of glowing hot gas which forms a ring structure around the black hole itself. This structure was famously captured in the first-ever image of the supermassive black hole, named Sagittarius A*, which was released earlier this year. Now, scientists have discovered an oddity in this dramatic environment, detecting a bubble of hot gas which is orbiting around the black hole and its ring structure.

As shown in this video animation, the bubble of hot gas is moving around the black hole in a similar manner to the way the Earth orbits the sun. This bubble of gas wasn’t seen in the image of Sagittarius A* (which was captured by a collaboration called the Event Horizon Telescope) but instead was inferred from observations using the Atacama Large Millimeter/submillimeter Array (ALMA).

This is the first image of Sagittarius A* (or Sgr A* for short), the supermassive black hole at the center of our galaxy. It was captured by the Event Horizon Telescope (EHT) collaboration. EHT Collaboration

One notable fact about the bubble is the tremendous speed at which it is moving, according to lead researcher Maciek Wielgus of the Max Planck Institute for Radio Astronomy. “We think we’re looking at a hot bubble of gas zipping around Sagittarius A* on an orbit similar in size to that of the planet Mercury, but making a full loop in just around 70 minutes,” Wielgus said in a statement. “This requires a mind blowing velocity of about 30% of the speed of light!”

The discovery was made using data collected for the Event Horizon Telescope project, which Wielgus and colleagues were also a part of. Some of these observations caught the aftermath of an X-ray flare, which is thought to be caused by hot gas close to the black hole. In this case, the researchers saw the flare not only in the X-ray wavelength but also in radio wavelengths. That supports the idea of a hot gas bubble giving off flares, which can be used to study the magnetic field of the black hole.

The researchers now want to make more observations of the black hole and its environment using ALMA and the GRAVITY instrument on the Very Large Telescope and are hoping to directly observe an orbiting gas bubble. This could help them understand more about the physics of the extreme conditions near very large black holes.

“Hopefully, one day, we will be comfortable saying that we ‘know’ what is going on in Sagittarius A*,” said Wielgus.

The research is published in the journal Astronomy & Astrophysics.

Editors’ Recommendations

Source link

Denial of responsibility! Planetconcerns is an automatic aggregator around the global media. All the content are available free on Internet. We have just arranged it in one platform for educational purpose only. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials on our website, please contact us by email – [email protected]. The content will be deleted within 24 hours.

Leave a comment